The lower-hybrid drift instability in a slab geometry
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The lower-hybrid drift instability is studied within a model problem with some of the features
that characterize the anode plasma in the magnetic insulated diode experiment at the
Weizmann Institute (Phys. Rev. A, in press). The spatial dependence of the amplitude of the
linear electrostatic perturbations is calculated. First the equilibrium is determined by selecting
distribution functions that depend on the constants of motion in a collisionless plasma and by
imposing quasineutrality. In the particular equilibrium studied, the electric field, temperature,
and drift velocities are uniform and the density decreases exponentially. The Vlasov—Poisson
equations are then linearized assuming magnetized electrons and unmagnetized ions. The
governing equation is a second-order ordinary differential equation for the perturbed
electrostatic potential. A dispersion relation is derived and analytical solutions are written for
the eigenfunctions. The growth rate of each mode is determined by the plasma parameters at
its respective turning point. Since the only plasma parameter that is not uniform is the density,
the growth rates of the different eigenmodes are similar when the roots of the local dispersion

relation depend only weakly on the density. Since the distance between successive turning
points is usually very small, it is concluded that for the chosen equilibrium the perturbations

will grow uniformly across the plasma.

I. INTRODUCTION

It has recently been suggested that the lower-hybrid
drift instability causes the anomalous diffusion and conse-
quently the fast expansion of a plasma into the gap in the
magnetic insulated diode experiment at the Weizmann Insti-
tute.! The diffusion coefficients depend on the wave ampli-
tude, and the spatial dependence of those coefficients is relat-
ed to the spatial dependence of the wave amplitude. The
lower-hybrid drift instability has been studied extensively in
the past.”™' Our purpose is to study the spatial dependence
of the wave amplitude in a model problem with some of the
features that characterize the Weizmann experiment. To
that end we address the nonlocal problem, taking into ac-
count the finite dimensions of the plasma. Figure 1 is a sche-
matic of the magnetic insulated diode experiment at the
Weizmann Institute. The distance between the anode and
the cathode is much smaller than the dimensions of the elec-
trodes. Therefore in our model problem all time-indepen-
dent quantities are approximated to depend on x only, the
direction perpendicular to the anode and cathode planes.
The plasma is confined to the anode by an external uniform
magnetic field, which lies on the anode plane, parallel to the z
axis. The nonuniformity of the plasma is accompanied by a
time-independent electric field in the x direction and drift
velocities in the y direction.

The equilibrium distribution functions of the ions and of
the electrons are solutions of the Vlasov equation in the pres-
ence of the equilibrium electric and magnetic fields. These
solutions are functions of the three constants of motion: the
total perpendicular energy, the y canonical momentum, and
the velocity component parallel to the magnetic field. Fol-
lowing Davidson® we assume that the functional forms of the
distribution functions of the ions and of the electrons are the
same, and then, by imposing quasineutrality, we derive the
form of the equilibrium electric field. For the particular cho-
sen form of the distribution functions, the density is expo-
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nentially decreasing, and the equilibrium electric field, drift
velocities, and temperatures of the ions and the electrons are
all x independent. Having specified the equilibrium we then
perform a linear stability analysis. The linearized Vlasov—
Poisson equations are reduced to a second-order differential
equation for the perturbed electrostatic potential. We have
assumed that the electrons are strongly magnetized and that
the ions are unmagnetized. An analytical solution is given to
the governing equation and the boundary conditions yield a
dispersion relation. The eigenfunctions of the equation de-
scribe the x profile of the perturbation and the imaginary
part of the eigenvalue determines the growth rate of the in-
stability of the mode. The forms of the eigenfunctions are
determined by kd, & being the wavenumber of the perturba-
tion in the y direction, and d the plasma thickness. Solving
the governing equation yields a set of eigenfunctions and a
corresponding set of values of some parameter g, for each
value of kd. The parameters g and kd determine the location
of the turning point of the eigenfunction, and the growth rate
of the instability is found by solving the usual local disper-
sion relation at the turning point. This turning point is

plasma

FIG. 1. Schematic; of the magnetic insulated diode experiment at the Weiz-
mann Institute. Dimensions are in centimeters.
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shown to be close to the first maximum and first zero of the
eigenfunction. Thus the growth rates of the instability of the
various modes differ by the values of the plasma parameters
at the various turning points. Since the only parameter
whose equilibrium value varies across the plasma is the den-
sity, the stability of the various modes differs by the plasma
density at the turning point.

For the solution of the nonlocal problem we may now
use the extensive parameter studies that already exist for the
local dispersion relation. For the parameters of the experi-
ment at the Weizmann Institute’ we use the approximate
results of Davidson and Gladd.® The growth rate of the in-
stability is very weakly dependent on the plasma density and
therefore many modes will grow with a similar rate. Since
the distance between successive turning points is very small,
and since the amplitude of each mode is maximal near its
turning point, the level of fluctuations will be uniform across
the plasma. The diffusion coefficients of the anomalous dif-
fusion are also expected to be uniform.

In Sec. II we derive the governing equation. In Sec. III
we derive analytical solutions to the nonlocal problem and
relate them to the solutions of the local dispersion relation.
In light of the solutions of the nonlocal problem, the local
solutions can be clearly interpreted. Numerical examples of
the Weizmann experiment are presented and discussed in
Sec. IV.

Il. DERIVATION OF THE GOVERNING EQUATION

Let us consider a plasma with an equilibrium that is x
dependent only, and that is immersed in a uniform magnetic
field of the form

B0=Boéz. (l)

In choosing the equilibrium, our analysis follows Davidson’s
analysis for systems of cylindrical symmetry.® We also use
some of his notation. We assume that the equilibrium elec-
tric field has an x component only. Three single-particle con-
stants of motion are the axial velocity v,, the perpendicular
Hamiltonian H |, and the canonical momentum p,, where

H, = (m/2)(V] +v}) + ¢;®y(x) (2)
and
Py =m;(v, + €Q;x) . 3)

Here e; and m; are the charge and mass of a particle of spe-
ciesj, @ (x) is the electrostatic potential, €; = sgn e;,and Q,
= |e;|By/(m;c) is the cyclotron frequency. From here on
we will study the stability of equilibria that are functions of
these three constants of motion,

FO2xv) =f(H, p,)G;(v,), (4)
where the parallel velocity distribution satisfies the normali-
zation condition §* _dv, G;(v,) = 1. One may examine
various equilibrium distribution functions of the form (4)
that model different types of equilibria. Meanwhile we do
not specify the form of the equilibrium.

The linearized Vlasov equation is
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d € vXBye,\ 91 .~
vy _I(E 0 ’). _] v,
[at+v +m, o+ - avaj}(xvt)
e; A g
= ;’- Vo- ;f,-“”(x,v) , (5)

J

where 5},- and 6 are the perturbed distribution function and
the perturbed electrostatic potential, and E,, is the equilibri-
um electric field,

o, .
x - 6
axe (6)

With Eq. (4) we write Eq. (5) as

Eo—_—_

vXBge,\ 9.~
co )-av]&fj(x,v,t)

(D)

a €
2wy _1(
[3t+v +m Fot

J

=_V5(I>(m (v—e,v, )

m, l
. I af ,~‘°’)
) 8 ) 7
+mye, apy +e, dv, @)
We substitute
5D(x,1) = 5B(x)exp( — iwt), Imw>0, (8)

in the right-hand side of Eq. (7) and integrate from
t'= — oo tot’ =t Assuming theinitial perturbations to be
zero and noting that v,, df**/dH, and df ®/dv, are con-
stant along an unperturbed particle trajectory, we obtain

f 0) af.(O)
6f(x1vat) = ( al) mjvz _(#

J dt' exp( — iot )——6<I>[x (t")]

(0)
¢ f dr’
aH

xXexp( — 1wt’)v’(t‘)-V’5<—l>[x'(t’)]

If ©) e
+e¢ Y, f dr’
op, J-«

X exp( -iwt')i,ﬁ[x'(t')] : (9)
dy

The particle trajectories x'(¢z’) and v'(¢’) satisfy

—x' =V 10
dat’ 1o
and
.. ( V' X B2, )
11
o Eo(x') + ” (an
Making use of
v V6D (x') =¢—g75$(x’) , (12)
and integrating by pané, we find
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\ e (U <°>)
8f (x,v,1) = | =2 v, f dr’
Y, (%) mj( v, ™ JH

xexp( — iot')-2_ 50 [x'(t]
oz

IF O o
+e¢ TBfIJ‘]_ e~ 5D (x)

i

0) ot
dH, J_.

Xexp( — iwt " )6®[x'(1")]

(@
f;,,f ar
, J-

+ iwe;

xexp(—imt')i%[x'(t')]. (13)
oy’
We now write
8®(x) = 8P (x)exp[i(k,y + k,z) ] (14)
and
8fx,v,t) = 8f(x,vyexp[itk,y + k,z—wt)] . (15)
Equation (13) now becomes
(0) (0} {0)
o =2 ("g;z —my, ;H )zk I+e, ;IL 5
+ iwe; &2 I+ ik e A -1, (16)
7 dp

¥y
where

IEJ-O dr exp( — iw7)6P[x'(7)]

Xexp{ik,[y(r) — p(0)] + ik, [z(1) —z(0)]}
an
and
T=t'—t, (18a)
x(N=x'(t"). (18b)
The particle trajectories are
dv, e;
- _—’—jE0+ejO,jvy , (19a)
d
E‘t’z,= — e, , (19b)
dv
Z=0. 19¢)
dt’ ¢

At this stage we specify the equilibrium distribution
function that will be studied in the rest of this paper. The
chosen equilibrium distribution function is

fj(O)(HL Py)
= (m Y, )exp( oy )exp( Gl 2) ) ,
27T 2T); T
(20)

where N;, T};, and v,; are constants. We require quasineu-
trality;
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Np(x) =Ny (x) (21)

assuming singly ionized ions. Quasineutrality is satisfied if
the exponents in the distribution functions (20) are equal for
the two species. Therefore, the electrostatic potential is

T.T,.B ;
b, (x) ____“__“__"_(U_y"__v&)x, (22)
(T + T1))e\T T,
The corresponding electric field is
T.T,B i
Ey(x) = —=———2— (ﬁ——ﬁ—) (23)
(Tle + TJ_,)C TJ.e

and is constant. Imposing quasineutrality on the chosen
forms of equilibrium distribution functions determines the
form of the electric field. While Davidson’s electric field var-
ied across the cylindrical plasma,® the electric field in our
slab plasma is uniform. One may easily verify that the equi-
librium is isothermal and that T, are the perpendicular tem-
peratures. Similarly v, are found to be the uniform flow
velocities of the electrons and the ions. The density profile of
both species is

N(x) =N, exp( —x/d), (24)
where
d=c(T,, + T,)/eBy(v, +v,,). (25)

Note that for the assumed form of the distribution functions
all the parameters are determined by specifying B,,
T,,, T, d,and at least one of the flow velocities v,, or v,,.. If
both flow velocities are unknown, one has to assume some
value for one of them. In some cases it is reasonable to as-
sume that v, is zero. Meanwhile, we do not specify the value
of v,;. Defining the ratio of the flow velocities 7 as

r=uv,/v,, (26)
we write equivalently to (22) and (23)

by(x) = [(T; — T\, r)/e(1 + 1)) (x/d), (27)

Ey= (T, r—T,;)/e(1+rd, (28)
and

= (c/eBd) (T, + T;))/(1 + 1), (29a)

v, =", (29b)

With the equilibrium distribution functions specified, we
now turn back to the perturbed distribution functions. The
ions and electrons are analyzed separately, starting with the
electrons. We use cylindrical coordinates (v, , 8, v,) for the
velocity

v, cos@=uv,, (30a)
v, sinf=v, —v,. {30b)
The unperturbed orbits are
y(7) —y(0) = — & T— 1 cos(Qr)v, cos O — sin(Q7)
B, Q

X(C%+vy +v, sin¢9)—vl cose] s
(31a)
(31b)

Here we define vy, the single-particle drift velocity, as

z(7) —2(0) =v,7.
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¢cE, ¢ (T, —rT,,)

Vp= ——2= (32)
£ B, eBd (1+7r)
and v, the diamagnetic drift velocity, as
c d cT,;
= —(NT;) = ——-. 33

o= BN e )= T (%)
Equations (29), (32), and (33) yield

v, = Vg + Vp; . (34)

We could write an expression similar to (31) for x(7). How-
ever, a major simplification of the problem is achieved by
assuming that

65<I>.rL <50,
x

(35)

where r, is the electron Larmor radius [r
=(2T,./m,)"?/Q,]. With this assumption, x(7) is x(0) in
Eq. (17) and

PIx(1)] =6P{x(0)] =6d(x). (36)

This approximation results from neglecting finite Larmor
radius effects (FLR) in the x direction. We do not, however,
neglect FLR effects in the y direction, the direction of the
drift velocities. In the y direction we allow spatial field varia-
tions on a scale length comparable to the electron Larmor
radius. The possibility of using the approximation (36) in-
stead of expanding 6@ to second order in the electron Lar-
mor radius was mentioned by Kent and Taylor.?° Not only
do we assume that the variations of the perturbations in the x
direction are slow, we even allow them to vary on the same
scale length on which the equilibrium quantities vary, and,
explicitly,

——-(1 o) ———= (37)

d(ln N )

dx
In doing so, we expand the validity of our formalism to a
parameter regime where local theory is not valid. A neces-
sary condition for the validity of a local theory is that the
logarithmic derivative of the perturbed quantities be much
smaller than the logarithmic derivative of the equilibrium
quantities. We do not restrict ourselves to such a condition.
Qur theory holds when (37) is satisfied.

In the expression for the electron-perturbed distribution
function we now perform the integration along the unper-
turbed orbits in the standard way. We then calculate p,, the
electron perturbed density,

21 0 w
bp, = —ef def v, dv, f dv, f, .
o 4} —

Since we are interested in the lower-hybrid drift instability
we assume that

(38)

€, . (39)
Moreover, we assume that
k,=0 (40)

following Gladd,” who showed that the growth rate of the
instability is largest if &, is zero. With these two last assump-
tions the electron-perturbed density becomes
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e2
Sp.(x) = — exp( - %)8@():)
kvp,
x(l —exp( — £)S +—2>—exp( — §)S) ,
(0 —kvg)
(41)
where
& k
S= Z J—I(Q UDe)II(g) (42a)
I= — e
and
s=1k*r . (42b)
We suppressed the subscript in k, and used the equality
Upe =V — Ug . (43)
We note now that
kVp /Q, =C/kd. (44)

and study the case where { is of order 1 and kd is large. This
corresponds to the case in which the wavelength of the per-
turbation is comparable to the electron Larmor radius, and
is much smaller than the slab thickness. With this assump-
tion S is approximated as

S=1) . (45)

We now turn to the ions. Since the wave frequency is
assumed to be much larger than the ion cyclotron frequency,
we make the usual approximation that the ions are unmag-
netized. The ion perturbed density thus obtained is

N,é&

p; = — exp( 7 )6<I>(x)

o ()]
kv, kv,

where v,,; is the ion thermal velocity [vy,; = (2T,/m;)"/?]
and Z is the plasma dispersion function.

We make the electrostatic approximation that is valid
for low beta plasmas.® We substitute the electron and ion
charge densities into Poisson’s equation, and, finally, obtain

dd 1 —x
e ( + 1% exp " 1—IL({)exp(— &)

Mo orexp(— o) + (L
e ke §+(T.~)

X[l + (“’ i )z(“' — ko, )”)&p —0. (47)
kv, kv,

Here Ap,, is the electron Debye length at the anode [A 2,

=T, /(47N,e*)]. Equating the coefficient of 5® in Eq.

(47) to zero gives us the local dispersion relation® at the

point x:

(46)

T A
b
kvp,
2 7
@ — ko) ol§)exp( — &)

)l Ca) )l -
T, kv, kv,

(48)
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where A2 equals 7,/(4wNe*) and N is the plasma density.
Equation (47) is the governing equation. We would like to
solve it with the boundary conditions

SP(0) =0=56P(L), (49)
where the anodeis located at x = Oand the cathodeatx = L.

Equation (47) with the boundary conditions is an eigenval-
ue equation for the eigenfunction §® and the eigenvalue w.

IIl. CALCULATION OF THE EIGENFUNCTIONS AND THE
GROWTH RATES OF THE INSTABILITY

We rewrite the governing equation (47) as follows:

2
ddgf’— [ (kd)? — g exp( —%)]16® =0. (50)
The new eigenvalue g is
2
g= = (=) [~ B~
/{DA
+ 2 (Gexp(~£)
(@ — kvg) 0 P
T o — kv, © — kv,
()
+(T.)[ +( kv, ) ( kv,
(51a)
‘where
X=x/d. (51b)

It is readily seen that Eq. (50) [with the boundary condi-
tions (49)] is Sturmian and that g takes an infinite number
of real and positive values g, that accumulate at infinity.?!
This series of eigenvalues g, depends on the two parameters
kd and L /d. Once g, is found for given kd and L /d, the
eigenvalues w, are found by solving Eq. (51), which is
equivalent to the local dispersion relation (48) with density,

N=N,(kd)*/g, . (52)
The density satisfies Eq. (52) at x = x,,,, where
exp( — x,,/d) = (kd)*/g, . (53)

The point x, ,, which is the turning point of the nth mode, is
positive if g, is larger than (kd)?. We note that the only
turning point of each mode is also an inflection point. The
turning point is the only inflection point that is not necessar-
ily a zero of the function.

We can now interpret the local analysis and the local
dispersion relation (48) within the framework of the nonlo-
cal analysis. The eigenvalues g, are found by solving the
nonlocal problem [Eq. (50)]. For each eigenvalue g,, the
single turning point x, , is found through Eq. (53). The local
dispersion relation is valid at this point and the roots @, of
this local dispersion relation are the eigenvalues correspond-
ing to the mode whose turning point is at x,,. Since the
eigenvalues g, comprise a real increasing series, the turning
points also comprise a real increasing series. If the distance
between successive g, is small, the distance between neigh-
boring turning points is small as well. Thus close to each
point there is a turning point of some mode, and the local
dispersion relation at each point is approximately satisfied
by the eigenvalues of the mode.

The stability of the modes is determined by the roots of

426 Phys. Fluids B, Vol. 1, No. 2, February 1989

the local dispersion relation at the turning points of the
modes. Since the only nonuniform plasma parameter is the
density, the difference in stability between the various modes
results from the dependence of the roots of the local disper-
sion relation on the plasma density.

Before we refer to the extensive information accumulat-
ed about the roots of the local dispersion relation in order to
draw conclusions about the stability of the nonlocal modes,
we discuss the explicit solutions of the nonlocal equation
(50) and the profiles of the eigenfunctions.

The explicit solution of our governing equation (50) is

8D (x) = A, (28" %~ ¥) + BY,,, (28" %~ 7).

(54)
From the boundary conditions (49) we obtain
AJy(28"%) + BY,,,(28"%) =0 (55a)
and
AJde (2g1/2e—L/2d) + BYde(Zgl/ze’L/zd) — O . (55b)

Equations (55) have a nontrivial solution for 4 and B if the
following dispersion relation is satisfied:

Jde (2gl/2) Yde (2g1/Ze — L/ld)
_Jzkd(zgl/Ze—L/2d)Y2kd(2gl/2) =0. (56)
Let us assume that L /d is very large. Since we want 6&
tobe bounded also at infinity we require that Bin Eq. (54) be
zero. The electrostatic potential is therefore
8P = Jp4 (28" 2=, (57)

The requirement that 6@ is zero at the anode yields the dis-
persion relation

Lo .

Jua(28%) =0. (58)
The eigenvalues g, satisfy
& =R,/4, (59)

where R,, are the zeros of the Bessel function J,,,. Note that
all these zeros are real. The eigenfunctions are now written
as

8P, (x) =Jyuy (Rne_X/zd) . (60)

Here R,, are the positive zeros only. We do not refer to the
negative zeros — R, because their substitution into the ex-
pressions (60) does not add independent solutions to Eq.
(50). Using Eq. (59) we write Eq. (53) as

exp( —x,,/2d) =2kd /R, . (61)

Since the zeros R, are larger than the order 2kd,?* there
exists a positive turning point x,, for each mode. Let us
denote by x{™ the mth zero of the eigenfunction §®,,. There
are n + 1 such zeros in the interval [0, « ). These zeros
satisfy

exp( —x"/2d)=R,_,,/R,, m=0,.,n. (62)
Since R, is larger than 24d, we find, using (61) and (62),

that

(m)

Xa>X, m=0,.,n.

(63)

As expected, all the zeros are located between the anode and
the turning point. The value of the eigenfunction at the turn-
ing point is
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6P, (x,,) = Iy (2kd) (64)

following (62), and is of the same form for all the modes.

Since it usually is so, we now assume that kd is much
larger than unity. In that case the order of the Bessel func-
tion is large, and the first zero is approximately??

Ry =2kd {1 + 1.86(2kd)~?/?

+O0[(2kd)~*"]}, kd>»1. (65)
The first maximum M, of the Bessel function for large order
i822
M, =2kd {1 + 0.81(2kd) 23

+ 0 [(2kd)~*]}, kd>1. (66)

The locations of the last zero x{™, the last maximum x{™**,
and the turning point of the nth mode are

xP=2dIn(R,/R,) , (67a)
Xm0 =24 In(R,/M,) , (67b)
X,, =2dIn(R,/2kd) . (67¢)

Using the approximate expressions (65) and (66), we ob-
tain
x(M x4 1.05(2kd) ~232d,
X, =x{ + 1.86(2kd) ~%/32d .

(68a)
(68b)

The turning point is very close to the last maximum of the
eigenfunction, where the amplitude is largest. The eigenval-
ues of each mode are approximately the roots of the local
dispersion relation (48) at that maximum or at the last zero.
For the fundamental mode the eigenvalues are found by
solving the local dispersion relation at the anode.

When kd is large the distance between successive zeros
of J,,, is small,

(Ryy1 —R,)/Ro=(R, ; —

Following (67c), the distance between the turning points of
successive modes is also small,

(xr,n+1 —xl,n )/d<l . (70)

Close to each value of x there exists a turning point of some
mode, the eigenvalues of which are determined by the plas-
ma parameters at x. That mode also has its largest value near
x. In this sense these modes are local modes.

We now compare the growth rates of the instability of
the various modes. The various modes differ in the plasma
density at the respective turning points. Thus we have to
examine the dependence of the instability on the density in
the local dispersion relation. For this purpose we refer to the
results obtained by previous extensive studies of the local
dispersion relation.

We start with the case of small drift velocity where |vg |
€Uy, or, following (32),

(c/eBd) [T\, —rT /(1 +r)] vy, -
In that case the real and imaginary parts of w are’

—R,)/2kd<1.  (69)

(1)
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w, = kUE[l — I ()exp( — g)(vﬂ)
Vg

-1
><((k/1|>)2 Io(é’)eXp(—s‘)) ]
' (72a)
a)—\/_‘T (@, — kvg) (0, — kv,;)
T, kuth,Io(g‘)exp( §)kae
((M )2+
i vth:

) -2
T,

—1
'k[‘vof-vm((un z ) ]
(72b)
The value of the plasma dispersion function was approxi-
mated for a small argument. For notational convenience we
write T, for 7.

We now examine the dependence of the growth rate on k
and on A,. The dependence on A, tells us whether the fun-
damental mode is the most unstable mode (when w; de-
creases with A, ). Equating the derivative of w; with respect
to k to zero we find that, for given A, the maximum value of
w, is obtained for k = k,,, where

M=(T/T)/ (A}, +1/2). (73)
The value of @, is then
\/; T\ UpeVpi 14
@ = —— YN (74)
8\ T, Vi (A +1L72)

On the other hand, equating the derivative of @, with respect
toA % to zero, we find that for given k the maximum value of
w;, is obtained for A, = Ap,,, where

n 1({T.\1
Al L..—( ) . 75
b+ =3 (75)
The value of ; is then
T. .
= N7 T ot (76)
27 T, vy,

For a given k, if A 2 is larger (Smaller) than 4 %,,, »; de-
creases (increases) with increasing (decreasing) A32.
Therefore if 42,, is smaller than A3 ,, the fundamental
mode is the most unstable. If A ,, is larger than A 3 ,, some
higher mode is more unstable. We write this condition in an
equivalent way. For

1T 1
kickl=—r St — | (77
2 T, (Apa+1i/2)

the maximum growth rate w; is obtained for a mode of 4 3
which satisfies

n 1T 1
AL pLt=—" 2 (78)
PT2T 2T, k?
The eigenvalue g, of that mode is
% T, r 2
e (1 —‘—kz—L) @,
I)A 2 22 2 '1 DA
following (52) and (78).
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In summary, the maximum growth rate is

Te UDe 2 Te z [ ( 2 Te ) - 1] 2 1 Te 1
N i Uthi((k/lo.q) +T.- +§)k Up; — Upe| (KApy) +T,~ +4 , k>2 7.}_—_———(/1123,44-’{/2),
“ _ﬁ_ﬁﬂﬂ’ik k2<i . 1
21 T, vw 2T (Aha+nr/2)
(80)
I
Note that same rate. The fluctuating fields resulting from the instabil-
k2/k2,, =) (81) ity are expected to fill the plasma uniformly.
o max Figure 2 shows the growth rate of the instability o, (cal-
and that culated from the local dispersion relation) versus the wave-
o, (k=k,) 4 X T, \'? 12 2 /9112 number K for the parameters of the Weizmann experiment.
;-Ek—=k——)— 7 ( T ) 8(Aps +1/2) Figure 3 shows the eigenmode profiles 5@, for n = 0, 9, 20.
! s ¢ The parameter kd equals 60 and corresponds to the maxi-
— 32 )_1_ (82) mum growth rate in the Weizmann experiment.
2772 Figure 4 shows the growth rate of the instability versus

This ratio is close to 1.

IV. NUMERICAL EXAMPLES AND DISCUSSION

For the numerical examples we examine a plasma of
parameters equal to those of the experiment at the Weiz-
mann Institute.! The electron and ion temperatures are 7
and 25 eV, respectively. The intensity of the external uni-
form magnetic field is 7.2 kG and the plasma density at the
anode is 2.2 X 10'® cm™—>. The plasma thickness is about 0.1
cm. The electron Debye length at the anode Ap,, is 4 X 107>
cm while the electron Larmor radius r; is 10~> cm. For such
small values of 24%,/7 (5X1072) the electron Debye
length A5 could be neglected in the local dispersion relation
relative to the electron Larmor radius and therefore the
growth rate of the instability is independent of A, (and of
the density). This is usually the case in plasmas of not too
low a density. Note that the ratio 4 3 /77 is independent of
the temperature. The various modes differ only in the plas-
ma density at their turning points, and, since this density
does not affect the eigenvalues, all the modes grow at the

1.4 ! | ! i
300 400 500 600 700 800
k(i)

FIG. 2. The growth rate w; versus the wavenumber k. The parameters are
T,=7¢V, T,=25¢V,d=0.1 cm, B,=7.2 kG, and N, =2.2x 10"
3

cm
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the density for a plasma of much lower density. The tem-
peratures, the magnetic field, and the slab thickness are as in

(a)

S b, (arb. units)

06 08 0
x/d

Scpglarb, units)

013

o o
2 3

001

S,plarb. units)

003
-007

-0t 1 1 i 1
00 C4 08 L2 1.6
x/d

FIG. 3. The profiles of the eigenmodes 5, for kd = 60. (a) n =0, (b)
n=9,(c) n=20.
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FIG. 4. The growth rate @, versus the density N. The parametersare T, = 7
eV, T, =25eV,d=0.1cm, By =72kG, k=162cm™".

the previous example. For such a plasma of about 10'*cm 2,

the growth rate of the instability is sensitive to the density. In
Fig. 4 the wavenumber k equals 162 cm™" and is smaller
than k.. As shown in the figure the dependence of w; on the
density N is not monotonic and has a maximum as given in
Eq. (76). In such a plasma the various modes have different
growth rates. If the density at the anode N, is 1.5X10'?
cm 3, the most unstable mode among the modes of k = 162
cm ™! is that mode whose turning point is located where the
density falls to about 8x10'"" cm™3. Higher and lower
modes will grow at a smaller rate. Note, however, that the
most unstable mode is that of a wavenumber k equal to k,,,
which, following (73), is about 300 cm~'. The maximal
growth rate is of the fundamental mode and, following (74),
is about 1078 sec™".

In formulating our model problem we made some sim-
plifying assumptions. We now discuss the implications of
these assumptions and the possibility of generalization to a
more realizable model. ‘

In the choice of the equilibrium there was some arbitra-
riness. Even among the time-independent solutions of the
Vlasov equation we could have chosen distribution functions
other than (20). In the particular form of the distribution
function we analyzed, all the quantities are uniform, except
for the density. It would be interesting to study the stability
of equilibria that are nonuniform in other parameters as
well, especially since the rate of instability depends only
weakly on the density. Such nonuniform equilibria could
possess very localized modes as the most unstable modes.
The level of fluctuations would be nonuniform and may re-
sult in nonuniform diffusion coefficients in the description of
the anomalous diffusion of the plasma.

In the Weizmann experiment the electron—ion collision
frequency is of the same order of magnitude as the frequency
of the instability. Collisions may thus have a stabilizing ef-
fect in this case.
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We note that the equilibrium distribution functions we
assumed are not valid near the walls. Since the cathode is far
away, the main inconsistency is near the anode. For each
species the distribution function is probably incorrect within
a distance smaller than the Larmor radius. For the electrons
this distance is very small and would probably not affect
much. For the ions this distance is larger. The assumption
that the ions are unmagnetized seems to be a good one, but it
is not clear whether their distribution function is Maxwel-
lian near the wall.

We have noted that there are cases of interest in which
the high modes are more unstable than the fundamental
mode. Our analysis is not valid for very high modes when the
wave fields vary in the x direction on a scale length compara-
ble to the electron Larmor radius. The analysis should be
modified to include those FLR effects in the x direction. We
anticipate, however, that the incorporation of such FLR ef-
fects into our model will not change the results substantially.

It is also possible that the spatial dependence of the wave
at saturation will differ from the spatial dependence in the
exponential growth regime. Thus it is hard to conclude from
our linear analysis anything definite about the spatial depen-
dence of the coefficients of the anomalous diffusion.
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